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1. Introduction and statement of the framework

That a perturbative Higgs boson exist, one or more and perhaps supersymmetric, is highly

probable, with its elusiveness so far explained by the lack of direct experiments at the Fermi

scale or above it. The difficulty of proposing explicit and sensible Higgsless models, despite

some interesting recent attempts [1 – 3], is not the least reason behind this view. However,

while waiting for the LHC to say the final word on this issue, we find useful to spend

some time in exploring possible generic patterns of Higgsless descriptions of ElectroWeak

Symmmetry Breaking (EWSB). In fact, it is again the very lack of direct experiments at

– 1 –



J
H
E
P
0
2
(
2
0
0
9
)
0
2
9

the relevant energy scale that motivates us, since this lack may hide some clues needed to

understand the physics of EWSB.

We base our considerations on the following generic picture. Some strong dynamics

breaks a SU(2)L × SU(2)R ×U(1)X symmetry, global in the limit of vanishing electroweak

gauge couplings, down to SU(2)L+R ×U(1)X . This spontaneous symmetry breaking, char-

acterised by the scale v = (
√

2GF )−1/2 ≈ 246, also leads to the breaking of the standard

electroweak gauge symmetry, SU(2)L ×U(1)Y , Y = T3R +X, down to the electromagnetic

U(1). There exist three generations of fermions with the usual SU(2)L × U(1)Y quantum

numbers, called elementary since they do not feel directly the strong dynamics. The strong

dynamics produces composite vectors and composite fermions with definite transformation

properties under SU(2)L×SU(2)R/SU(2)L+R. These non-linear transformations involve as

usual the Goldstone fields, π̂ = πaσa/2, themselves transforming under SU(2)L×SU(2)R as

U → gRUg†L, U ≡ ei2π̂/v. (1.1)

The exchange of the composite vectors is supposed to keep unitary the scattering am-

plitudes of W ’s and Z’s up to the scale Λ ≈ 4πv ≈ 3 TeV and may give an important

contribution to the ElectroWeak Precision Tests (EWPT), both at tree and loop level [4].

For the composite fermions, which are the focus of this work, we consider Singlets, Doublets

or Triplets under SU(2)L+R. They also contribute, at loop level, to the EWPT. Further-

more they carry a generation index i = 1, 2, 3 as the standard elementary fermions and

a X quantum number that allows them to mix with the elementary fermions consistently

with gauge invariance. We hope that the multiplicity of these states be somehow explained

by the strong dynamics. A crucial assumption we make is that, in absence of this mixing,

the elementary fermions are massless1 and the strong dynamics does not distinguish the

different generations. We shall show that a definite symmetry pattern for the mixing be-

tween the elementary and the composite fermions allows to keep, in the Singlet case, the

CKM picture of flavour physics, although with some characteristic effects in flavour physics

still emerging.

While not resting on any explicit model of EWSB, which may actually be difficult to

exhibit at all with present knowledge, the interesting aspect of the picture outlined above

is that some of its consequences can be analyzed on general grounds. Not surprisingly,

this is based on the symmetries of the problem: on one side the chiral SU(2)L × SU(2)R
spontaneously broken down to SU(2)L+R and, on the other side, the postulated flavour

symmetry, Gf , of the strong dynamics and of the weak gauge interactions in absence of

mixing between the composite and the elementary fermions.

The content of the paper is the following. In section 2 we describe the effective chiral

Lagrangians of the composite fermions up to one derivative terms, including the mass

mixing with the elementary fermions. In section 3 we discuss some of the effects of the

composite Doublets or Triplets in the EWPT. We take these considerations as evidence for

a generic difficulty of Doublets or Triplets in a truly strongly interacting theory of EWSB,

1An early paper discussing the mass generation of the ordinary fermions by mixing with composite

fermions is [5].
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unless some parameters are suitably adjusted. As shown in section 4 , even considerations

of flavour physics make Doublets and Triplets somewhat disfavoured. On the other hand,

the effective Lagrangian for composite Singlets up to one derivative terms is identical to

the one of elementary fermions with the same weak quantum numbers, thus screening at

all their composite nature. They may play however an interesting role in Flavour Physics

by mixing with the elementary fermions in a suitable way, as discussed in section 4. We

require that the flavour symmetry GS
f be broken by mixing parameters which, treated

as spurions, have definite transformation properties under GS
f . In the case of composite

Singlets, this enables us to enforce a specific case of Minimal Flavour Violation, with the

CKM matrix as the only control of flavour changing phenomena. Yet the mixing between

the elementary and the composite singlets gives rise to significant residual effects both in

the EWPT and in Flavour Physics, as discussed in section 5. While all the discussion

is concentrated on quarks, the picture is easily extended to leptons (See section 6). The

collider phenomenology is briefly described in section 7. The conclusions are summarized

in section 8.

2. Effective lagrangians

We consider in turn the effective Lagrangians for Singlets, Doublets and Triplets under

SU(2)L+R up to one derivative terms, including the general mass mixings with the elemen-

tary fermions. We concentrate on quarks, leaving the straightforward extension to leptons

in section 7. As mentioned, the symmetry includes a U(1)X to allow the standard gauging

of hypercharge.

Other than (1.1), the key ingredient to describe the transformation properties of the

various fields under the full SU(2)L × SU(2)R is the little matrix u [6] via

U = u2 .

This matrix parametrizes the SU(2)L × SU(2)R/SU(2)L+R coset and transforms as2

u → gRuh† = hug†L ,

where h = h(u, gL, gR) is uniquely determined by this equation. In turn, important func-

tions of u are

Γµ =
1

2

[

u†(∂µ − iB̂µ)u + u(∂µ − iŴµ)u†
]

, Γ†
µ = −Γµ , Γµ → hΓµh† + h∂µh† , (2.1)

and

uµ = iu†DµUu† = u†
µ, uµ → huµh† , (2.2)

where

DµU = ∂µU − iB̂µU + iUŴµ , Ŵµ = gT aW a
µ , B̂µ = g′T 3Bµ . (2.3)

2Note that here as in [4] we follow the convention, usually adopted in QCD, where the L-transformations

act on the right and viceversa. This is unlike what is normally done in discussing strong EWSB.
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2.1 Singlets

Singlets under SU(2)L+R that can mix with the standard quarks are U and D, carrying

colour and X-numbers 2/3 and −1/3 respectively. Their covariant kinetic term is the trivial

one and no other one-derivative term appears (Tr(uµ)=0). In absence of mixing with the

elementary fermions, the interactions of the singlets S with the Goldstone fields appear only

at two-derivative level and are suppressed by inverse powers of the cutoff. Their composite

nature may be difficult to see directly. They may however play an interesting role in

giving masses by mixing to the standard fermions. Introducing the fictitious doublets, one

per generation,

Q ≡
(

U

D

)

(2.4)

the most general mixing mass term, including the necessary SU(2)R breaking, is3

LS
mix = mu

LQ̄RP̂uUqL + mu
RQ̄LP̂uqR + md

LQ̄RP̂dUqL + md
RQ̄LP̂dqR + h.c. (2.5)

where P̂u(d) = (1±σ3)/2. All these m’s are matrices in flavour space. In absence of mixing

with the elementary fermions, the composite singlets have flavour independent masses:

LS = iQ̄γµ(∂µ − ig′XBµ)Q + MU ŪU + MDD̄D . (2.6)

A discussion about the flavour structure of the model is postponed to section 4 and 5. Here

we limit to note that in the mass-eigenstate basis the relation between the mass parameters

in (2.5)–(2.6) and the physical masses of light and heavy states are given by eqs. (5.2)–(5.4).

2.2 Doublets

The Doublets

D ≡
(

T

B

)

, (2.7)

of X-number 1/6, transform under SU(2)L+R as D → hD. We call the up and down

components of D respectively T and B, not to confuse them with the SU(2)L+R singlets

with the same charge, U and D. The most general invariant Lagrangian up to one-derivative

terms is

LD = iD̄γµ(∂µ + Γµ − ig′XBµ)D +
α

2
D̄γµγ5uµD + MDD̄D. (2.8)

The strong dynamics is assumed to conserve parity.

The mixing Lagrangian is

LD
mix = mu

LD̄Ru†P̂uUqL + mu
RD̄Lu†P̂uqR + md

LD̄Ru†P̂dUqL + md
RD̄Lu†P̂dqR + h.c. (2.9)

whose invariance follows from u†D → gLu†D and uD → gRuD. Neglecting terms contain-

ing pions,

iΓµ → 1

2
(Ŵµ + B̂µ) , uµ → B̂µ − Ŵµ . (2.10)

3The U appearing in all the Lmix of this section is the matrix in (1.1) and should not be confused with

the heavy fermion U .
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Therefore the electroweak interactions of the Doublets are

Lint
D = D̄γµ

[

Ŵµ
1

2
(1 − αγ5) + B̂µ

1

2
(1 + αγ5) + g′XBµ

]

D (2.11)

(which reduce to the ones of an elementary quark family for α = 1).

2.3 Triplets

The Triplets T that contain bot an up and a down-type quark have X = 2/3 or X = −1/3

and transform under SU(2)L+R as T → hT h+. In 2× 2 matrix notation, e.g. for X = 2/3,

it is

T =

(

T/
√

2 X5/3

B −T/
√

2

)

where X5/3 is an exotic quark of charge 2/3.

The most general invariant Lagrangian is

LT = iT r[T̄ γµ(∂µT + [Γµ,T ] − ig′XBµT )] + αTr[T̄ γµγ5uµT ] + MT T̄ T , (2.12)

with the electroweak gauge interactions that reduce to

Lint
T = Tr[T̄ γµ(Ŵµ(1 − αγ5) + B̂µ(1 + αγ5) + g′XBµ)T ]. (2.13)

To construct the mixing Lagrangian, note that, under SU(2)L × SU(2)R

u†T u† → gL(u†T u†)g†R

uT u† → gRR(uT u†)g†R.

Defining the vectors

(uT̄ u†)1i = v̄i, (uT̄ u)1i = w̄i (2.14)

the mixing Lagrangian is

LT
mix = mu

Lw̄RU †P̂uUqL + mu
Rv̄LP̂uqR + md

Lw̄RU †P̂dUqL + md
Rv̄LP̂dqR + h.c. (2.15)

3. EWPT for doublets and triplets

3.1 ∆S

Even in absence of any mixing, the Doublets and the Triplets contribute to the the EWPT

through the S-parameter. Each doublet and triplet contribute respectively to the S-

parameter as

∆S(D) =
1

2π
[1 − (α2 − 1)(log Λ2/M2

D)] (3.1)

∆S(T ) =
2

π
[1 − (α2 − 1)(log Λ2/M2

T )] (3.2)

where Λ is a suitable UV cutoff. Especially if there is one such contribution per generation,

this is a pretty large effect (which might be negative if α > 1). This ∆S is reminiscent of
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the well known contribution from technifermions in TechniColour. In our ”effective” view,

there is one contribution as in (3.1) or (3.2) per generation and we would have to add it

to the contribution from heavy vectors, which occurs at tree level.

Eq.s (3.1) or (3.2) appear to us as a generic difficulty for a truly strongly interacting

theory of EWSB. It is of some interest, however, to make contact with models in the

literature that have a moderate or even vanishing ∆S from fermion loops. One case is if

the composites, either doublets or triplets, occur in full representations of SU(2)L×SU(2)R
before symmetry breaking. This is meaningful only if the compositeness scale is higher than

the scale of electroweak symmetry breaking, like in models where there is a Higgs doublet,

either elementary or composite. Examples are vector-like representations (2, 1) ⊕ (1, 2) or

(2, 2) of SU(2)L×SU(2)R with suitable X-numbers, giving respectively 2 doublets (D1,D2)

or one triplet and one singlet (T ⊕ S) under SU(2)L+R. In this case, ∆S may vanish. As

easily seen by explicit calculations, this requires degeneracy of the full representation after

SU(2)L × SU(2)R → SU(2)L+R breaking and perturbative uncorrected gauge couplings,

which speaks against a strongly interacting composite Higgs boson.

Another example of formally vanishing ∆S from fermion loops comes from a Dirac

fermion transforming as (1, 2, 1) under SU(2)L × SU(2)C × SU(2)R, broken down to the

diagonal subgroup, SU(2)L+C+R, like in the so called Three-site Model [7]. This requires

that the mass of the doublet be much larger than the masses of the vector bosons and

that perturbation theory makes sense in all the couplings, including the coupling gC of

SU(2)C . In this case, (3.1) remains formally correct, with α = 0, but the full ∆S from the

fermionic loop is reabsorbed, after renormalization of gC , in the tree level effect to S due

to the kinetic mixing of the vector bosons.

3.2 ∆T and Z → b̄b

Unlike ∆S, a contribution to the T parameter arises only after breaking of the custodial

symmetry from the composite/elementary mixing, which is important from the third family

only. In fact, in presence of a strong breaking of this symmetry in the left-handed sector,

i.e. md
L ≪ mu

L, explicit calculations show that ∆T is always unacceptably large, whereas it

is moderate and generally positive, if mu
L ≈ md

L, so as to minimize custodial breaking. In

this case, however, it is crucial to watch the Zb̄LbL coupling, because of the bL/BL-mixing

that occurs at tree level.

Let us consider the deviations from the SM of the Zb̄b couplings, δgL, δgR. It is in

general (an overall factor g/cW taken away)

δgL,R = (sb
L,R)2[gL,R(B) − gL,R(b)] (3.3)

where sb
L,R are the sines of the mixing angles in the down sector for the third generation.

From the Lagrangians of eq.s (2.11) and (2.13) one gets respectively:

• Doublet case

δgL =
(sb

L)2

4
(1 − α) , δgR = −(sb

R)2

4
(1 − α) . (3.4)

– 6 –
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• Triplet case

δgL = −(sb
L)2

2
α , δgR = −(sb

R)2

2
(1 − α) . (3.5)

Now for generic α = O(1) and md
L ≈ mu

L for the third generation, this is a strong constraint.

In fact, from the diagonalization of the mass matrix of the third generation (see section 5)

one finds

sb
L ≈ mt

MT

1

st
Rct

R

, sb
R ≈ mb

mt
st
R , (3.6)

where st
R and ct

R denote sine and cosine of the mixing angle of the right-handed top with

its composite partner of mass MT . Whatever the value of st
R is, these equations make δgR

irrelevant (i.e. no explanation offered for the notorious problem of the b forward-backward

asymmetry) whereas, depending on the value of α, a strong bound on MT generally arises

from the contribution of δgL to Γ(Z → b̄b)4.

From the composite/elementary mixing also the Singlets contribute to ∆T and to

Z → b̄b. We shall come back to this in section 5.

4. Flavour symmetries

As mentioned in the Introduction we assume that, in absence of composite/elementary

mixing, the system possesses a large flavour symmetry which extends the one of the SM

for vanishing Yukawa couplings,

GSM
f = SU(3)q × SU(3)uR × SU(3)dR, (4.1)

to include also the flavour symmetry of the composite sector, i.e.

GS
f = SU(3)U × SU(3)D × SU(3)q × SU(3)uR × SU(3)dR (4.2)

or

GD,T
f = SU(3)D,T × SU(3)q × SU(3)uR × SU(3)dR. (4.3)

Both in the SM viewed as an effective theory or here, these flavour symmetries have to

be broken appropriately to keep consistency with experiments. An additional problem

of the flavour-breaking mixing terms in the effective Lagrangians in section 2, if treated

generically, is the large number of physical parameters, even increased relative to the SM.

4.1 Minimal flavour violation

As well known, the SM model viewed as an effective theory gives a consistent description

of flavour physics, provided the flavour group in the quark sector, GSM
f , is only broken by

two dimensionless parameters, Y u and Y d, which, treated as spurions, transform as

Y u = (3, 3̄) under SU(3)uR × SU(3)q (4.4)

Y d = (3, 3̄) under SU(3)dR × SU(3)q (4.5)

4δgL = 0 or α = 0 in the Triplet case results if the Triplet comes from a (2, 2) of SU(2)L × SU(2)R and

the perturbative gauge couplings are kept uncorrected [8].

– 7 –
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Such an hypothesis enforces in particular the successful CKM picture, since, without loss

of generality, Y d can be reduced to diagonal form, Y d = λd, and similarly Y u can be

diagonalized up to a single unitary matrix, Y u = λuV , where V is the CKM matrix. As

long as this symmetry and this symmetry breaking pattern is respected, even the inclusion

of higher dimensional operators, suppressed by a scale of 3 ÷ 5 TeV, is harmless [9].

4.2 Singlets

It would be nice if the above picture of flavour physics could be extended to the situation we

are considering here, keeping in particular under control the number of new parameters in

the flavour sector. This is in fact neatly the case under one of the following circumstances

for the flavour group GS
f , that we name Parity Conserving (PC) and Parity Breaking (PB):

• 1. Parity conserving

GS
f is only broken by

Y u
1 = (3, 3̄) under SU(3)U × SU(3)q+uR (4.6)

Y d
1 = (3, 3̄) under SU(3)D × SU(3)q+dR (4.7)

where SU(3)q+uR or SU(3)q+dR denote the corresponding diagonal groups. For the

mass matrices in eq. (2.5) this implies:

mu
L = vY u

1 , mu
R = fuY u

1 , md
L = vY d

1 , md
R = fdY d

1 , (4.8)

where fu, fd are two mass scales, likely of the same order as the composite quark

masses, MU ,MD in (2.6), and V is again the CKM matrix. After diagonalization of

Y u
1 and Y d

1 and suitable redefinitions of the various fields in generation space, the

overall mass Lagrangian can be written as

LS
mix(PC) = vŪRλuV uL + fuŪLλuuR + vD̄RλddL + fdD̄LλddR + h.c. (4.9)

with diagonal λu and λd.

• 2. Parity breaking

GS
f is broken down to SU(3)U+uR × SU(3)D+dR × SU(3)q, which is in turn only

broken by

Y u
2 = (3, 3̄) under SU(3)U+uR × SU(3)q (4.10)

Y d
2 = (3, 3̄) under SU(3)D+dR × SU(3)q, (4.11)

so that in this case

mu
L = vY u

2 , mu
R = fu1, md

L = vY d
2 , md

R = fd1. (4.12)

The mass Lagrangian can be written as

LS
mix(PB) = vŪRλuV uL + fuŪLuR + vD̄RλddL + fdD̄LdR + h.c. (4.13)

– 8 –
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Note that in both cases the direct mass terms between two elementary fermions is not

compatible with the required symmetry and symmetry breaking.

A third case analogous to 2 above with GS
f broken down to SU(3)U+q × SU(3)D+q ×

SU(3)uR × SU(3)dR would imply

mu
L ∝ 1, mu

R = fuY u, md
L ∝ 1, md

R = fdY d. (4.14)

Although also leading to a case where flavour mixing is controlled only by the CKM matrix,

this case is not compatible with observations unless the mass MU of the composite U -quarks

is taken well above 5 TeV. This is due to the intra-generation mixing of the left-handed

light quarks, which spoils the precise tests of CKM unitarity (see e.g. ref. [10]).

4.3 Doublets and triplets

It is of interest to ask if suitable symmetry conditions, analogous to the previous ones,

can force the CKM picture of flavour physics also in the case of composite doublets or

triplets. The answer is no5. The overall flavour symmetry now is GD,T
f in (4.3). Therefore,

with reference, e.g., to the PC case above, the analogous condition is that GD,T
f be only

broken by

Y u
3 = (3, 3̄) under SU(3)D,T × SU(3)q+uR (4.15)

Y d
3 = (3, 3̄) under SU(3)D,T × SU(3)q+dR (4.16)

In turn, by suitable redefinitions of the various fields, the mixing Lagrangian can be writ-

ten as

LD,T
mix (PC) = vŪRVλuV uL + fuŪLλuuR + vD̄RλddL + fdD̄LλddR + h.c. (4.17)

where V is a further unitary matrix that cannot be rotated away from the overall La-

grangian.

4.4 Flavour breaking by higher dimensional operators

As in the case without composite fermions, we have to ask if higher dimensional operators

consistent with the symmetries and the symmetry breaking described above are compat-

ible with observations. There are two sets of flavour-changing neutral-current (FCNC)

dimension-six operators, weighted by the inverse square of the cutoff and by suitable di-

mensionless coefficients, cij , i, j = 1, 2, 3:

Oij
LL = (q̄i

Lγµqj
L)2, Oij

LR = (q̄i
RP̂dU [γµ, γν ]qj

L)Bµν (4.18)

which are most significant. In table 1 we give the expected expressions for the cij in

the Singlet case according to the symmetry breaking conditions formulated in section 4.2

and we compare them with the analogous expressions obtained in MFV [9]. They are

5As in the singlet case we discard here as well, and for the same reason, the symmetry SU(3)D+q ×

SU(3)uR × SU(3)dR.
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Operators MFV Singlets PC Singlets PB

cij

Λ2
Oij

LL cij = (Y u†Y u)2ij cij = (Y u†
1 Y u

1 )2ij cij = (Y u†
2 Y u

2 )2ij

(∆F = 2) ≈ m4
t

v4
(V ∗

3iV3j)
2 ≈ m2

t

v2

M2
T

(fu)2
(V ∗

3iV3j)
2 ≈ m4

t

v4

M4
T

(fu)4
(V ∗

3iV3j)
2

cij

Λ2
Oij

LR cij = (Y dY u†Y u)ij cij = fd

Λ (Y d†
1 Y d

1 Y u†
1 Y u

1 )ij cij = fd

Λ (Y d
2 Y u†

2 Y u
2 )ij

(∆F = 1) ≈ mdi
m2

t

v3
V ∗

3iV3j ≈ mdi
mt

v2

MT MD

fuΛ
V ∗

3iV3j ≈ mdi
m2

t

v3

M2
T MD

(fu)2Λ
V ∗

3iV3j

Table 1: Comparison of the coefficients of the leading dimension-six operators relevant to ∆F = 2

and ∆F = 1 FCNC transitions of down-type quarks.

numerically equivalent if st
R is of order unity, showing that a cutoff scale of about 3÷5 TeV

is also in this case compatible with current data.

The situation is different in the Doublet or Triplet cases. Following the discussion in

section 4.3, a most dangerous effective Lagrangian is

∆L∆F=2
D,T =

fd

Λ3
(q̄RP̂dY

d†
3 Y u

3 UqL)2 → mdmc(V12)
2

v2

MDMU

fuΛ3
(d̄RsL)2 (4.19)

where in the last step we have selected the ∆S = 2 contribution and md,mc are the masses

of the down and charmed quarks. The matrix element of this effective Lagrangian between

neutral kaons, for |V2
12| ≈ 1, is about 100 times bigger than the matrix element of the leading

dimension-six ∆S = 2 operator in MFV. This issue (and a similar difficulty in ∆S = 1

left-right operators) is a manifestation of a general problem of composite models [11]: it

appears in all cases where the suppression of FCNCs is attributed only to the small mixing

of SM fermions and heavy states, but there is no flavour alignment between light and heavy

states (see e.g. [12]).

5. Composite/elementary mixing effects for singlets

5.1 Tree level

After sending uL → V †uL, both the up and down mass matrices reduce to three 2 × 2

blocks, each labelled by a generation index i:

M
(u)
i =

(

0 fuλu
i [fu]

vλu
i mU

)

, M
(d)
i =

(

0 fdλd
i [fd]

vλd
i mD

)

, (5.1)

where the values outside/within square brackets correspond to the PC/PB cases of sec-

tion 4.2. Relative to the SM, this introduces two extra parameters for each quark, which

can be chosen as the mass of the heavy partner and the mixing angle in the left-handed

or in the right-handed sector. In the limit where we neglect light quark masses, the corre-

sponding left-handed mixing angles can be set to zero and the heavy states decouples in

low-energy observables.
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Considering a generic 2× 2 block, and defining left and right mixing angles as follows,
(

−cq
R sq

R

sq
R cq

R

)(

0 mq
R

mq
L MQ

)(

cq
L sq

L

−sq
L cq

L

)

= diag(mq,MQq) , (5.2)

we have (q stands for u and d and we omit for simplicity the index q on the r.h.s.):

tqR(L) =
sq
R(L)

cq
R(L)

=
m2

R(L) − m2
L(R) − M2

Q +
√

M4
Q + 2M2

Q(m2
L + m2

R) + (m2
R − m2

L)2

2mR(L)MQ
,

M2
Qq

(m2
q) =

M2
Q + m2

R + m2
L ±

√

M4
Q + 2M2

Q(m2
L + m2

R) + (m2
R − m2

L)2

2
, (5.3)

which in the limit mq
L ≪ MQ reduce to

MQq ≈
√

M2
Q + (mq

R)2 , mq ≈ mq
Lmq

R

MQq

, sq
R ≈ mq

R

MQq

, sq
L ≈ mq

L

MQq

cq
R . (5.4)

The results in eq. (5.2)–(5.4) are completely general (they holds also for Doublets and

Triplets in the appropriate mass-eigenstate basis). In the two specific cases discussed in

section 4.2 they imply

(sq
L)2|PC ≈

vmqM
2
Q

f qM3
Qq

or (sq
L)2|PB ≈

m2
qM

2
Q

(f q)2M2
Qq

. (5.5)

Since the two right-handed fields have the same quantum numbers, the rotation in the

right-handed sector does not lead to observable effects and we can eliminate it by means

of the exact relation

tqRtqL =
mq

MQq

. (5.6)

Both in the PC and in the PB case the right-handed mixing in the top sector can

be large if fu ∼ MU . As we have seen in section 4.4 this configuration is required for

a natural suppression of the dimensions-six FCNC effective operators. We shall similarly

assume fd ∼ MD.

The rotation to the mass eigenstates leads to modifications in the interaction part

of the SM Lagrangian. The couplings of light and heavy fermions to Goldstone bosons,

W and Z fields (left-handed component) can be obtained from the SM Lagrangian with

the replacements

qi
L → ci

Lqi
L + si

LQi
L , miq

i
R → mic

i
Lqi

L + MQi
si
LQi

L . (5.7)

For instance, the currents coupled to W and Z fields, written in terms of the mass eigen-

states, are

Jµ
W =

g√
2

∑

ij=1,3

Vij

[

cui

L c
dj

L ūi
Lγµdj

L + sui

L s
dj

L Ū i
LγµDj

L + cui

L s
dj

L ūi
LγµDj

L + sui

L c
dj

L Ū i
Lγµdj

L

]

,

Jµ
Z =

g

cW

∑

i=1,6

{

(T3)i
[

(ci
L)2q̄i

Lγµqi
L + (si

L)2Q̄i
LγµQi

L + si
Lci

Lq̄i
LγµQi

L + si
Lci

LQ̄i
Lγµqi

L

]

−Qis
2
W

[

q̄iγµqi + Q̄iγµQi
]}

, (5.8)
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while the fermion couplings to a single Goldstone boson field are

δLπ =

√
2iπ+

v

∑

ij=1,3

Vij

[

cui

L mui
ūi

R + sui

L MUi
Ū i

R

][

c
dj

L dj
L + s

dj

L Dj
L

]

+

√
2iπ−

v

∑

ij=1,3

V ∗
ji

[

cdi

L mdi
d̄i

R + sdi

L MDi
D̄i

R

][

c
uj

L uj
L + s

uj

L U j
L

]

− iπ0

v

∑

i=1,3

[

cdi

L mdi
d̄i

R + sdi

L MDi
D̄i

R

][

cdi

L di
L + sdi

L Di
L

]

+
iπ0

v

∑

i=1,3

[

cui

L mui
ūi

R + sui

L MUi
Ū i

R

][

cui

L ui
L + sui

L U i
L

]

+ h.c. (5.9)

For all the light quarks, including the b, the mixing angles are very small. In principle,

one can expect some impact in the precise tests of CKM unitarity, which requires corrections

to Vus and Vud not exceeding 1% and 0.1%, respectively. However, this condition turns out

to be easily fulfilled even for small right-handed mixing. Also the tree-level correction to

the b-quark coupling gL, discussed in section 3.2, turns out to be negligible for fd ∼ MD.

5.2 Loop effects

The only significant impact of the light-heavy mixing at low energies arises at the loop

level from the top sector6. Here the sizable mixing with the heavy partner can lead to non-

negligible corrections to the top-induced non-decoupling effects in FCNCs and EWPT. The

corrections can be summarised as follows (see the appendix for more details):

• SM amplitudes which have a finite limit for xt = m2
t /m

2
W → ∞, such as A(b → sγ),

are modified in (s = st
L)

FSM(xt) → (1 − s2)FSM(xt) + s2FSM(xT ) , xT = M2
T /m2

W . (5.10)

• SM amplitudes which grows linearly with xt, such a δT , A(Z → d̄idj), A(∆F = 2),

receive a correction which is universal in the gauge-less limit (mW → 0):

FSM(xt) → FSM(xt) × R(xt, xT ) (5.11)

R(xt, xT ) = 1 + s2

[

−2+s2

(

M2
T

m2
t

+1

)

+2
M2

T

M2
T −m2

t

ln

(

m2
T

m2
t

)

+O
(

m2
W

m2
t

,
m2

W

M2
T

)]

The two most interesting phenomenological bounds, arising from ∆F = 2 (in particular

ǫK) and Z → bb̄, are summarised in figure 1. In the case of ∆S = 2 we plot the constraint

following from (ǫK)exp/(ǫK)SM = 0.92 ± 0.14, as derived in [16] from a recent analysis of

all ∆F = 2 amplitudes in the MFV framework. In the Z → bb̄ case we show the constraint

following from (δgb
L)exp/(δgb

L)SM = 0.86 ± 0.21, as derived by the Rb measurement [17],

where δgb
L is the deviation of gb

L from its tree-level SM value. The present constraints form

Z → b̄s and b → sγ (see ref. [18]) are substantially less severe.

6For previous related calculations, see [13 – 15]
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Figure 1: Constraints in the tR–MT plane at 95% C.L. from ∆F = 2 (red curve) and Zb̄b

(blue curve).

Allowed region

As shown in figure 1, ttR = 1 implies a lower bound around 800 GeV for MT , but

this limit evaporates as soon as ttR & 1.5 . Independently of the value of MT and ttR, the

correlation of the various loop amplitudes, as described above, implies a small correction

to δT : a positive contribution which does not exceed ≈ 10% of δT SM
top . This makes it

unlikely that a too large contribution to the S-parameter can be reconciled with the EWPT

by a significant δT from composite singlets. Because of the different behaviour in the

mt → ∞ limit, the impact is much smaller in b → sγ, where the positive correction does

not exceed ≈ 2%.

6. Leptons

The picture described so far for the quarks can be trivially extended to leptons with

composites Ei and Ni, one per generation, taking among the elementary leptons also the

right-handed neutrinos νRi
. Note that the Ni have no interaction at ”renormalizable” level.

The smallness of the observed neutrino masses can be attributed to a large Majorana mass

for the elementary νRi
’s, M , related to the breaking of lepton number and much larger than

the compositeness scale of the Ni, of mass MN . This mass among elementary fermions can

be present consistently with all the symmetries we have been talking about. Using a

notation similar to the one of the quarks, mL has to be sufficiently smaller than MN , so

that the light neutrinos are approximately νL + (mL/MN )NL and have mass

mlight
ν ≈

(

mL

MN

)2 m2
R

M
. (6.1)
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Figure 2: Production cross sections at LHC: for a pair of composite quarks of mass M (full curve);

for a singlet T t̄ (dashed curve); for a singlet T b̄ (dotted curve).

It may be interesting to study the phenomenology and the cosmology7 of the neutrino

sector so extended, which is outside the scope of this work.

7. Collider Phenomenology

At the LHC, the pair production of any composite quark proceeds by gluon-gluon fusion.

Single production, on the contrary, in association with an elementary quark is a weak

Drell Yan process. In figure 2 we give both the pair-production cross section for a generic

composite quark and the T t̄ and T b̄ cross sections in the case of composite singlets, using

the currents in (5.8). The single production cross sections are reduced by the small mixing

angles (5.5), making all of them negligibly small but the one of the T .

The three singlets, of charge 2/3 or −1/3, have splittings

Mi − Mj

〈M〉 ∼
{

mi − mj

v
,
(m2

i − m2
j)

〈M2〉

}

, (7.1)

respectively in the PC and PB case, where mi are the masses of the corresponding ele-

mentary quarks. Except the partner of the top in the PC case, all the other composites of

given charge are highly degenerate.

The composite singlets have a narrow width, which is most easily computed by means

of (5.9). The dominant decay of Ui or Di is in the corresponding light state, ui or di plus

a W or a Z, with

Γ(Ui → di + W ) ≈ 2Γ(Ui → ui + Z) ≈ 1

16π
(sui

L )2
M3

Ui

v2
(7.2)

and, analogously,

Γ(Di → ui + W ) ≈ 2Γ(Di → di + Z) ≈ 1

16π
(sdi

L )2
M3

Di

v2
. (7.3)

7As an example, the composite N partner of a massless, or quasi massless neutrino, might be a Dark

Matter candidate for suitable values of its non renormalizable interactions.
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In view of section 5.1, the total widths of Ui, and similarly for Di, can be written as

ΓTot(Ui)|PC ≈ 3

32π

(

mui
M2

U

vfu

)

≈ 0.1 MeV
( mui

MeV

)

(

M2
U

fu TeV

)

(7.4)

or

ΓTot(Ui)|PB ≈ 3

32π

(

mui
M2

UMUi

v2(fu)2

)

≈ 0.5 eV
( mui

MeV

)2
(

M2
UMUi

(fu)2 TeV

)

. (7.5)

Taking the last factor in the r.h.s. of these equations equal to unity, these widths range

from about 0.1 MeV for U1 to about 200 MeV for D3 in the PC case, whereas they go from

a fraction of 1 eV for U1 to about 1MeV for D3 in the PB case.

All this is based on the mass mixings described in section 4. One can ask if these decay

properties could be changed by the presence of higher dimensional operators consistent with

the symmetries. There is no such operator at any relevant level in the Parity Conserving

case. In the Parity Breaking case the operator

∆L =
fu

Λ3
(Ū i

Rγµui
R)Σj(q̄

jγµqj), (7.6)

if present, would make the decay of U1 and U2 dominated by the modes

Ui → ui + f̄f (7.7)

where f is any elementary fermion, although still with a small width of about 0.1 MeV.

Similar considerations hold for the Di.

For several aspects (production cross-sections and leading decay modes into W + q)

the phenomenology of these heavy states at colliders is quite similar to that of sequential

fermion families within the SM (see e.g. [19]). Beside the narrow decay widths, an important

difference is the large neutral-current branching fraction into Z bosons, as indicated in

eqs. (7.2)–(7.3). The Z + q final state, which can have a non-negligible branching fraction

also for sequential quarks under specific circumstances [19], is definitely the most interesting

one for searches at hadron colliders. According to a recent CDF study [20], a bound of

about 270 GeV can be set on the mass of the partner of the b quark, assuming BR(B → bZ)

=100%.

8. Summary and conclusions

A consistent description of

• unitarity in WW scattering,

• the EWPT,

• fermion masses and flavour physics,

is greatly eased in the SM by the presence of a Higgs boson, which makes its search, perhaps

in a supersymmetric realm, a primary task of the LHC. The competitive view, based on a

strong dynamics, has definitely a harder time in achieving the same goals, at least when one
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tries to come to concrete models. However we do not forget, on one side, the scanty direct

experimentation at the Fermi scale or above it and, on the other side, that the SM itself is

likely to be an effective theory. Altogether, this still motivates the study of possible generic

features of strongly interacting theories of Electroweak Symmetry Breaking by making the

least possible reference to explicit models.

Along these lines, in this work we have analyzed the properties and the constraints on

possible composite fermions that might result quite naturally from the strong dynamics. As

already pointed out, this is made possible at all by focusing on two approximate symmetries:

• a chiral SU(2)L × SU(2)R that breaks down to its diagonal subgroup,

• a symmetry Gf that enlarges the flavour symmetry of the SM, in absence of the Higgs

doublet, to include the flavour symmetry of the composite fermions themselves.

While the first is a widely accepted feature of strong EWSB, the second one is meaningful

and useful if one takes the view that the masses of the standard elementary fermions only

arise from their mixing with the composite fermions. We find this assumption coherent with

the picture that the standard fermions do not participate in the strong dynamics, which is

the source of EWSB, whereas their masses do break the electroweak symmetry. We hope

that the multiplicity of the composite fermions needed to this purpose be explained by the

strong dynamics.

Our results can be summarized as follows. We consider Singlets, Doublets and Triplets

under the custodial SU(2)L+R. In a truly strongly interacting theory of EWSB we find

that Doublets and Triplets are faced with difficulties, although a generic analysis like ours

cannot exclude them. On the other hand the Singlets, whose composite nature is admittedly

hidden, may nevertheless play an important role. This is in particular the case in flavour

physics, where we show that it becomes pretty natural to keep the CKM picture of the SM

with MFV. Under this assumption, we can specify the fine structure of the spectrum of the

composite fermions, three of charge 2/3, Ui, and three of charge 1/3, Di, and their decay

properties, relevant to the search at the LHC. Equally specified is their loop contribution to

the T -parameter in the EWPT and to several flavour observables. The correlation between

these contributions excludes a significant effect of the Singlets in the T -parameter. At

the same time the non observation of significant deviation in flavour physics from the SM

does not set any strict lower bound on the their masses. The search for the heavy quarks,

with a 30% branching ratio into an ordinary quark and a Z-boson, might be feasible up to

significantly large values of their masses even in the early stage of the LHC. Whereas we

have concentrated on coloured states, all the picture can be naturally extended to leptons.

Several aspects of the phenomenology of these composites, if they exist at all, deserve

further study.
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A. Heavy-fermion effects in FCNCs

Following the notation of Buras [21] we write the leading electroweak contributions to b → s

FCNC transitions in the SM as follows:

H(∆B = 2) = λt
G2

Fm2
W

4π2
S0(xt) (b̄LγµsL)2 (A.1)

H(b → sνν̄) = λt
GF√

2

2α

π sin2 ΘW
[C0(xt) − 4B0(xt)](s̄LγµdL)(ν̄γµν) (A.2)

H(b → sµµ̄) = λt
GF√

2

2α

π sin2 ΘW
[C0(xt) + B0(xt)](s̄LγµdL)(µ̄γµµ) (A.3)

H(b → sγ) = λt
GF√

2

e

8π2
D′

0(xt) mbb̄RσµνFµνsL (A.4)

H(b → sG) = λt
GF√

2

gs

8π2
E′

0(xt) mbb̄RσµνT aGa
µνsL (A.5)

where λt = V ∗
tbVts and xt = m2

t /m
2
W . The corresponding terms for b → d and s → d

transitions –in the limit where we can neglect the charm quark mass– are obtained by

replacement of the CKM factor and by mb → ms. The explicit expressions of the loop

functions are:

S0(x) =
4x − 11x2 + x3

4(1 − x)2
− 3x3 ln x

2(1 − x)3
, S0(x)

x→∞−→ x

4
(A.6)

C0(x) =
x

8

[

x − 6

x − 1
+

3x + 2

(x − 1)2
ln x

]

, C0(x)
x→∞−→ x

8
(A.7)

B0(x) =
1

4

[

x

1 − x
+

x ln x

(x − 1)2

]

, B0(x)
x→∞−→ − 1

4
(A.8)

D′
0(x) = −(8x3 + 5x2 − 7x)

12(1 − x)3
+

x2(2 − 3x)

2(1 − x)4
ln x , D′

0(x)
x→∞−→ 2

3
(A.9)

E′
0(x) = −x(x2 − 5x − 2)

4(1 − x)3
+

3

2

x2

(1 − x)4
ln x, E′

0(x)
x→∞−→ 1

4
(A.10)

In the cases where the x → ∞ limit is finite, the modification of the coefficient functions

due the addition of the heavy state is

F (xt) → c2F (xt) + s2F (xT ) = F (xt) + s2[F (xT ) − F (xt)], F = B0,D
′
0, E

′
0 (A.11)

where xT = M2
T /m2

W . As expected, the correction vanishes for s = 0 or xt = xT (which

corresponds to setting mL = mR and MQ = 0 in the mass matrix). In this specific case the

correction vanishes also for MT ,mt ≫ mW . Note, however, that the xt → ∞ limit is not

necessarily a good numerical approximation for the physical top-quark mass. For instance

in the b → sγ case [D′
0(∞) − D′

0(x
phys
t )] ≈ 0.7D′

0(x
phys
t ).
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For the amplitudes where the x → ∞ limit is not finite (∆F = 2 box and Z penguin)

we cannot express the result using only SM loop functions. The result can be written in

the following general form:

F (xt) →
[

c4F̄ (xt, xt) + s4F̄ (xT , xT ) + 2c2s2F̄ (xt, xT )
]

− c2∆F (xt) − s2∆F (xT )

= F (xt) + s2
[

(s2 − 2)F̄ (xt, xt) + s2F̄ (xT , xT ) + 2c2F̄ (xt, xT )
]

−s2[∆FS(xT ) − ∆FS(xt)] , (A.12)

where

∆F (x) ≡ F̄ (x, x) − F (x) ,
∆F (x)

F (x)

x→∞−→ 0 , F = S0, C0 . (A.13)

As expected, also in this case the correction vanishes for s = 0 or xt = xT . The leading

functions F̄ (x, x) for the two relevant cases can be identified by the explicit calculation

of the diagrams with two different heavy propagators. In the limit mW → 0 the result is

particularly simple and universal,

F̄ (xT , xT )

F̄ (xt, xt)
=

M2
T

m2
t

,
F̄ (xT , xt)

F̄ (xt, xt)
=

M2
T

M2
T − m2

t

ln

(

m2
T

m2
t

)

, (A.14)

leading to the function R(xt, xT ) in eq. (5.11). The reason for this universality can be

understood by the fact that in the gaugeless limit the only UV and IR finite integral with

two heavy propagators, which exhibit the right grow for m1 = m2 → ∞, is

∫

dl2
m2

1m
2
2

(l2 + m2
1)(l

2 + m2
2)

=
m2

1m
2
2

m2
1 − m2

2

ln

(

m2
1

m2
2

)

(A.15)

The complete expressions of the loop functions, necessary to evaluate also the sublead-

ing terms, are

S̄0(x1, x2) = − 3x1x2

4(1 − x1)(1 − x2)
+

[

x1x2(4 − 8x1 + x2
1)

4(1 − x1)2(x1 − x2)
ln(x1) + [x1 ↔ x2]

]

, (A.16)

∆S0(x) = 0 , (A.17)

for the box diagram, and

C̄0(x1, x2) =
x2

1(x2 − 1)

8(x1 − x2)(x1 − 1)
ln(x1) + [x1 ↔ x2] , (A.18)

∆C0(x) = −5

8

x(1 − x + x ln(x))

(x − 1)2
, (A.19)

for the Z penguin.

The general decomposition in (A.12) applies also the the flavour-conserving non-

decoupling effects in δT and Z → b̄b. Since the approximate expression in eq. (5.11)

turns out to be an excellent numerical approximation for the Z → b̄s penguin, we have

used it in figure 1 to estimate the bound derived from Z → b̄b.
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